Application of Neural Networks in the Modeling of Plate Rolling Processes

نویسنده

  • Antonio Augusto Gorni
چکیده

Neural networks are a relatively new technique of Artificial Intelligence that emulates the behavior of biological neural systems in digital software or hardware. These networks can “learn” automatically complex relationships between data. So, there is no need to previously propose any model to correlate the desired variables. This feature makes this technique very useful in the modeling of processes which mathematical modeling is difficult or impossible. This work describes some real examples of applications of neural networks in the modeling of some plate mill processes at Companhia Siderúrgica Paulista COSIPA, a Brazilian steelmaker.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips

There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...

متن کامل

Using Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips

There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...

متن کامل

Modeling and Optimization of Roll-bonding Parameters for Bond Strength of Ti/Cu/Ti Clad Composites by Artificial Neural Networks and Genetic Algorithm

This paper deals with modeling and optimization of the roll-bonding process of Ti/Cu/Ti composite for determination of the best roll-bonding parameters leading to the maximum Ti/Cu bond strength by combination of neural network and genetic algorithm. An artificial neural network (ANN) program has been proposed to determine the effect of practical parameters, i.e., rolling temperature, reduction...

متن کامل

Review and Classification of Modeling Approaches of Soil Hydrology Processes

To use soil hydrology processes (SHP) models, which have increasingly extended during the last years, comprehensive knowledge about these models and their modeling approaches seems to be necessary. The modeling approaches can be categorized as either classical or non-classical. Classical approaches mainly model the SHP through solving the general unsaturated flow (Richards) equation, numericall...

متن کامل

Review and Classification of Modeling Approaches of Soil Hydrology Processes

To use soil hydrology processe (SHP) models, which have increasingly extended during the last years, comprehensive knowledge about these models and their modeling approaches seems to be necessary. The modeling approaches can be categorized as either classical or non-classical. Classical approaches mainly model the SHP through solving the general unsaturated flow (Richards) equation, numerically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997